Typed Lua Some random thoughts and ideas about types
1. Preface
We outline a method to extend the TypeScript system to Lua. However, as TypeScript's subtype semantics do not satisfy completeness (only soundness), we emphasize a method for subtyping that is both sound and complete.
...
2. Subtyping using operators
In this section, we develop just enough definitions to aid in the implementation of such a system. We will define precisely what it means to be a subtype and show informally that our definition is sensible (i.e., it is consistent with basic subtype rules).
Denote an element e e e β of type Ο \tau Ο β as e : Ο e:\tau e : Ο β. Define a subtype operator β€ \le β€ β where Ο β€ Ο \sigma\le\tau Ο β€ Ο β to indicate that Ο \sigma Ο β is a subtype of Ο \tau Ο β. What does it mean for a type to be the subtype of another type?
Definition 1: The set of all objects x : Ο x:\tau x : Ο is the domain of Ο \tau Ο β notated [ ββ£ [ Ο ] ββ£ ] [\![\tau]\!] [ [ Ο ] ]
Remark: We don't observe types under the framework of type theory. Instead, types are predicates where x : Ο x:\tau x : Ο β iff x β [ ββ£ [ Ο ] ββ£ ] x\in[\![\tau]\!] x β [ [ Ο ] ] .
Definition 2a: The set of operations, denoted Ξ© \Omega Ξ© β, is the set where any element is of typeo β Ξ© : β n [ ββ£ [ Ο i ] ββ£ ] β β m [ ββ£ [ Ο i ] ββ£ ] o\in\Omega:\prod_n[\![\tau_i]\!]\to\prod_m[\![\sigma_i]\!] o β Ξ© : β n β [ [ Ο i β ] ] β β m β [ [ Ο i β ] ] .
Definition 2b: Suppose we have o : β [ ββ£ [ a i ] ββ£ ] β β [ ββ£ [ b i ] ββ£ ] β Ξ© o:\prod [\![a_i]\!]\to\prod [\![b_i]\!]\in\Omega o : β [ [ a i β ] ] β β [ [ b i β ] ] β Ξ© β and o β² : β [ ββ£ [ a i β² ] ββ£ ] β β [ ββ£ [ b i β² ] ββ£ ] β Ξ© o':\prod [\![a_i']\!]\to\prod [\![b_i']\!]\in\Omega o β² : β [ [ a i β² β ] ] β β [ [ b i β² β ] ] β Ξ© . Then o = o β² o=o' o = o β² iff o β
β v = o β² β
β v o\;v=o'\;v o v = o β² v β for all v : β a i β β [ ββ£ [ a i ] ββ£ ] v:\prod a_i\in\prod[\![a_i]\!] v : β a i β β β [ [ a i β ] ] β. We will not develop this further.
Definition 3: Denote the set of operators that accept a parameter typed a a a β as Ξ© a \Omega_a Ξ© a β β. Then we define a β€ b a\le b a β€ b β as Ξ© a β Ξ© b \Omega_a\subseteq\Omega_b Ξ© a β β Ξ© b β .β
Remark: This is analogous to the subsumption rule in type theory. We'll see later that the sets Ξ© a \Omega_a Ξ© a β β are far easier to compute than subtype rules.
Definition 4: Type union is notated a + b a+b a + b β or a β
β β£ β
β b a\;|\;b a β£ b where x : a + b β
β βΊ β
β ( x : a ) β¨ ( x : b ) x:a+b \iff (x:a)\lor (x:b) x : a + b βΊ ( x : a ) β¨ ( x : b )
Definition 5: Type intersection is notated a β
b a\cdot b a β
b β where x : a β
b β
β βΊ β
β ( x : a ) β§ ( x : b ) x:a\cdot b\iff (x:a)\land(x:b) x : a β
b βΊ ( x : a ) β§ ( x : b ) β
Theorem 1: The following are true about types a , b , c a,b,c a , b , c β
a β€ b a\le b a β€ b β and b β€ c b\le c b β€ c β implies a β€ c a\le c a β€ c β
The theorem shows that β€ \le β€ β behaves as we would expect. The proof is trivial and excluded.
Lemma 1: [ ββ£ [ a β
β β£ β
β b ] ββ£ ] = [ ββ£ [ a ] ββ£ ] βͺ [ ββ£ [ b ] ββ£ ] [\![a\;|\;b]\!] = [\![a]\!]\cup [\![b]\!] [ [ a β£ b ] ] = [ [ a ] ] βͺ [ [ b ] ] and [ ββ£ [ a β
b ] ββ£ ] = [ ββ£ [ a ] ββ£ ] β© [ ββ£ [ b ] ββ£ ] [\![a\cdot b]\!] = [\![a]\!]\cap [\![b]\!] [ [ a β
b ] ] = [ [ a ] ] β© [ [ b ] ] β
ProofFirst:
Let any x : a β
β β£ β
β b β [ ββ£ [ a β
β β£ β
β b ] ββ£ ] x:a\;|\;b \in[\![a\;|\;b]\!] x : a β£ b β [ [ a β£ b ] ] then if x : a x:a x : a β we have x β [ ββ£ [ a ] ββ£ ] x\in[\![a]\!] x β [ [ a ] ] β and if x : b x:b x : b β we have x β [ ββ£ [ b ] ββ£ ] x\in[\![b]\!] x β [ [ b ] ] hence x β [ ββ£ [ a ] ββ£ ] βͺ [ ββ£ [ b ] ββ£ ] x\in[\![a]\!]\cup[\![b]\!] x β [ [ a ] ] βͺ [ [ b ] ] . Now the converse. Let any x : a β [ ββ£ [ a ] ββ£ ] x:a\in [\![a]\!] x : a β [ [ a ] ] then trivially x : a β
β β£ β
β b x:a\;|\;b x : a β£ b is true so x β [ ββ£ [ a β
β β£ β
β b ] ββ£ ] x\in[\![a\;|\;b]\!] x β [ [ a β£ b ] ] . Similarly, x β [ ββ£ [ b ] ββ£ ] β
β βΉ β
β x β [ ββ£ [ a β
β β£ β
β b ] ββ£ ] x\in[\![b]\!]\implies x\in[\![a\;|\;b]\!] x β [ [ b ] ] βΉ x β [ [ a β£ b ] ] β and so we're done. β‘ \Box β‘
Second: Proceed similarly to above.β
Theorem 2: Ξ© a β
β β£ β
β b = Ξ© a β© Ξ© b \Omega_{a\;|\;b}=\Omega_a\cap\Omega_b Ξ© a β£ b β = Ξ© a β β© Ξ© b β and βΞ© a β
b = Ξ© a βͺ Ξ© b \Omega_{a\cdot b}=\Omega_a\cup\Omega_b Ξ© a β
b β = Ξ© a β βͺ Ξ© b β β
ProofFirst:
Let any Ο β Ξ© a β
β β£ β
β b \phi\in\Omega_{a\;|\;b} Ο β Ξ© a β£ b β β and WLOG let Ο : [ ββ£ [ a β
β β£ β
β b ] ββ£ ] Γ U β V \phi:[\![a\;|\;b]\!]\times U\to V Ο : [ [ a β£ b ] ] Γ U β V and construct Ο 1 : [ ββ£ [ a ] ββ£ ] Γ U β V \phi_1:[\![a]\!]\times U\to V Ο 1 β : [ [ a ] ] Γ U β V β as Ο 1 : x Γ y β¦ Ο ( x Γ y ) \phi_1: x\times y\mapsto \phi(x\times y) Ο 1 β : x Γ y β¦ Ο ( x Γ y ) β where x β [ ββ£ [ a ] ββ£ ] x\in[\![a]\!] x β [ [ a ] ] so by Definition 2 we have Ξ© a β Ξ© a β
β β£ β
β b \Omega_a\subseteq\Omega_{a\;|\;b} Ξ© a β β Ξ© a β£ b β β. Similarly, we have Ξ© b β Ξ© a β
β β£ β
β b \Omega_b\subseteq\Omega_{a\;|\;b} Ξ© b β β Ξ© a β£ b β β. Conversely, let any Ο 1 β Ξ© a \phi_1\in\Omega_a Ο 1 β β Ξ© a β and Ο 2 β Ξ© b \phi_2\in\Omega_b Ο 2 β β Ξ© b β and WLOG suppose Ο 1 : [ ββ£ [ a ] ββ£ ] Γ U 1 β V 1 \phi_1:[\![a]\!]\times U_1\to V_1 Ο 1 β : [ [ a ] ] Γ U 1 β β V 1 β and Ο 2 : [ ββ£ [ b ] ββ£ ] Γ U 2 β V 2 \phi_2:[\![b]\!]\times U_2\to V_2 Ο 2 β : [ [ b ] ] Γ U 2 β β V 2 β then we can construct a partial map Ο : ( [ ββ£ [ a ] ββ£ ] βͺ [ ββ£ [ b ] ββ£ ] ) Γ ( U 1 βͺ U 2 ) β ( V 1 βͺ V 2 ) \phi:([\![a]\!]\cup [\![b]\!])\times (U_1\cup U_2)\rightharpoonup (V_1\cup V_2) Ο : ([ [ a ] ] βͺ [ [ b ] ]) Γ ( U 1 β βͺ U 2 β ) β ( V 1 β βͺ V 2 β ) where
Ο : x Γ y β¦ { Ο 1 ( x Γ y ) ifΒ x β [ ββ£ [ a ] ββ£ ] ,Β y β U 1 Ο 2 ( x Γ y ) ifΒ x β [ ββ£ [ b ] ββ£ ] ,Β y β U 2 \phi: x\times y\mapsto\begin{cases}\phi_1(x\times y) &\text{if $x\in[\![a]\!]$, $y\in U_1$}\\\phi_2(x\times y)&\text{if $x\in[\![b]\!]$, $y\in U_2$}\end{cases} Ο : x Γ y β¦ { Ο 1 β ( x Γ y ) Ο 2 β ( x Γ y ) β ifΒ x β [ [ a ] ] ,Β y β U 1 β ifΒ x β [ [ b ] ] ,Β y β U 2 β β β
and Ο β Ξ© a β
β β£ β
β b \phi\in \Omega_{a\;|\;b} Ο β Ξ© a β£ b β β as [ ββ£ [ a ] ββ£ ] βͺ [ ββ£ [ b ] ββ£ ] = [ ββ£ [ a β
β β£ β
β b ] ββ£ ] [\![a]\!]\cup [\![b]\!] = [\![a\;|\;b]\!] [ [ a ] ] βͺ [ [ b ] ] = [ [ a β£ b ] ] β by Lemma 1, concluding this proof. β‘ \Box β‘
Second: Proceed similarly to above.β
Corollary 1: If a β€ c a\le c a β€ c β and b β€ d b\le d b β€ d β then a + b β€ c + d a+b\le c+d a + b β€ c + d
ProofBy Definition 2, Ξ© a β Ξ© c \Omega_a\subseteq\Omega_c Ξ© a β β Ξ© c β β and Ξ© b β Ξ© d \Omega_b\subseteq\Omega_d Ξ© b β β Ξ© d β β.
By Theorem 2, Ξ© a + b = Ξ© a β© Ξ© b β Ξ© c β© Ξ© d = Ξ© c + d \Omega_{a+b} = \Omega_a\cap\Omega_b\subseteq\Omega_c\cap\Omega_d=\Omega_{c+d} Ξ© a + b β = Ξ© a β β© Ξ© b β β Ξ© c β β© Ξ© d β = Ξ© c + d β β, concluding this proof. β‘ \Box β‘ β
Theorem 3: If c β€ a c\le a c β€ a β and b β€ d b\le d b β€ d β then a β b β€ c β d a\to b\le c\to d a β b β€ c β d β.
βRemark: This is an important result and shows that function parameters are contravariant while function return types are covariant.
ProofLet any Ο 1 β Ξ© a β b \phi_1\in\Omega_{a\to b} Ο 1 β β Ξ© a β b β where WLOG Ο 1 : [ ββ£ [ a β b ] ββ£ ] Γ U 1 β V = Ο 1 : Ξ© a Γ U 1 β V \phi_1:[\![a\to b]\!]\times U_1\to V = \phi_1:\Omega_a\times U_1\to V Ο 1 β : [ [ a β b ] ] Γ U 1 β β V = Ο 1 β : Ξ© a β Γ U 1 β β V .
Constructβ function Ο x 1 : [ ββ£ [ b ] ββ£ ] Γ U 2 β V \varphi_x^1: [\![b]\!]\times U_2\to V Ο x 1 β : [ [ b ] ] Γ U 2 β β V so for all x β [ ββ£ [ c ] ββ£ ] x\in[\![c]\!] x β [ [ c ] ] and some f β Ξ© c β Ξ© a f\in\Omega_c\subseteq\Omega_a f β Ξ© c β β Ξ© a β we have Ο x 1 ( f ( x ) , β― β ) = Ο 1 ( f , β― β ) \varphi^1_x(f(x),\cdots)=\phi_1(f, \cdots) Ο x 1 β ( f ( x ) , β― ) = Ο 1 β ( f , β― ) .
Since Ξ© b β Ξ© d \Omega_b\subseteq\Omega_d Ξ© b β β Ξ© d β and Ο x 1 β Ξ© b \phi^1_x\in\Omega_b Ο x 1 β β Ξ© b β we can construct partial function Ο x 2 : [ ββ£ [ d ] ββ£ ] Γ U 2 β V β Ξ© d \varphi_x^2:[\![d]\!]\times U_2\rightharpoonup V \in\Omega_d Ο x 2 β : [ [ d ] ] Γ U 2 β β V β Ξ© d β so that for all x β [ ββ£ [ c ] ββ£ ] x\in[\![c]\!] x β [ [ c ] ] β and some f β Ξ© c f\in\Omega_c f β Ξ© c β we have Ο x 2 ( f ( x ) , β― β ) = Ο x 1 ( f ( x ) , β― β ) \varphi_x^2(f(x),\cdots)=\varphi_x^1(f(x),\cdots) Ο x 2 β ( f ( x ) , β― ) = Ο x 1 β ( f ( x ) , β― ) β.
Finally, we can construct Ο 2 : [ ββ£ [ c β d ] ββ£ ] Γ U 3 β V \phi_2:[\![c\to d]\!]\times U_3\to V Ο 2 β : [ [ c β d ] ] Γ U 3 β β V β such that Ο 2 = Ο x 2 = Ο x 1 = Ο 1 \phi_2=\varphi_x^2=\varphi_x^1=\phi_1 Ο 2 β = Ο x 2 β = Ο x 1 β = Ο 1 β for all x β [ ββ£ [ c ] ββ£ ] x\in[\![c]\!] x β [ [ c ] ] . As Ο 2 β Ξ© c β d \phi_2\in\Omega_{c\to d} Ο 2 β β Ξ© c β d β β, we have Ξ© a β b β Ξ© c β d \Omega_{a\to b}\subseteq\Omega_{c\to d} Ξ© a β b β β Ξ© c β d β β concluding this proof. β‘ \Box β‘ β
We will not develop these theorems further.
3. Subtyping as a SAT problem
4. βImplementation
5. Further work and limitations